Long-time python user looking to create a proper index.md for my pre-existing code

Hello,

I have created a way to make multiple plots and a duckdb database using python:


import aiohttp
import asyncio
import json
import pandas as pd
import plotly.graph_objects as go
import sys
from datetime import datetime
import dash
from dash import dcc, html
import nest_asyncio
import duckdb

nest_asyncio.apply()

async def fetch_data(session, url, params):
    async with session.get(url, params=params) as response:
        return await response.json()

async def parse_country_data(country_codes):
    country_data = []
    url = 'https://api.datacommons.org/stat/series'

    async with aiohttp.ClientSession() as session:
        tasks = []
        for code in country_codes:
            params = {'place': f'country/{code}', 'stat_var': 'sdg/EN_ATM_GHGT_AIP'}
            tasks.append(fetch_data(session, url, params))
        responses = await asyncio.gather(*tasks)

        for code, response in zip(country_codes, responses):
            if 'series' in response:
                country_data.append({
                    "country_code": code,
                    "data": [{"year": year, "emission": value} for year, value in response['series'].items()]
                })
            else:
                print(f'No data available for {code}.')
    return country_data

async def fetch_eu_data():
    url = 'https://api.datacommons.org/stat/series'
    params = {'place': 'undata-geo/G00500360', 'stat_var': 'sdg/EN_ATM_GHGT_AIP'}

    async with aiohttp.ClientSession() as session:
        async with session.get(url, params=params) as response:
            eu_data = await response.json()
            if 'series' in eu_data:
                EU_data = [{"country_code": "EU", "data": [{"year": year, "emission": value} for year, value in eu_data['series'].items()]}]
                print(f'Data fetched for European Union:', EU_data)
                return EU_data
            else:
                print("No EU data available.")
                return []

async def combine_data(country_data, EU_data):
    combined_data = country_data + EU_data if EU_data else country_data
    for country in combined_data:
        country["data"] = sorted(country["data"], key=lambda x: x["year"])
    return combined_data

async def save_data_to_json(data, file_path):
    with open(file_path, 'w') as json_file:
        json.dump(data, json_file, indent=4)
    print(f'Data saved to {file_path}')

async def load_data_from_json(file_path):
    with open(file_path, 'r') as json_file:
        data = json.load(json_file)
    return data

async def main():
    # Define country codes and file paths
    country_codes = ['AUS', 'AUT', 'BEL', 'BGR', 'BLR', 'CAN', 'CHE', 'CYP', 'CZE', 'DEU',
                    'DNK', 'ESP', 'EST', 'FIN', 'FRA', 'GBR', 'GRC', 'HRV', 'HUN', 'IRL',
                    'ISL', 'ITA', 'JPN', 'LIE', 'LTU', 'LUX', 'LVA', 'MCO', 'MLT', 'NLD',
                    'NOR', 'NZL', 'POL', 'PRT', 'ROU', 'RUS', 'SVK', 'SVN', 'SWE', 'TUR',
                    'UKR', 'USA']
    file_name = "EN_ATM_GHGT_AIP_sorted.json"
    file_path = f'/content/{file_name}'

    # Fetch and combine data
    country_data = await parse_country_data(country_codes)
    EU_data = await fetch_eu_data()
    combined_data = await combine_data(country_data, EU_data)

    # Save and load data
    await save_data_to_json(combined_data, file_path)
    data_example = await load_data_from_json(file_path)
    json.dump({"EN_ATM_GHGT_AIP_Data": combined_data}, sys.stdout)
    
    # Convert data to DataFrame
    df = pd.DataFrame([{'country_code': d['country_code'], 'year': item['year'], 'emission': item['emission']} for d in combined_data for item in d['data']])

    # Save data to CSV
    csv_file_path = '/content/EN_ATM_GHGT_AIP_Data.csv'
    df.to_csv(csv_file_path, index=False)
    print(f'Data saved to {csv_file_path}')

    # Save data to DuckDB
    con = duckdb.connect('/content/EN_ATM_GHGT_AIP_Data.db')
    con.register('data', df)
    con.execute("CREATE TABLE EN_ATM_GHGT_AIP_Data AS SELECT * FROM data")
    print('Data saved to DuckDB')

    # Initialize the Dash app
    app = dash.Dash(__name__)

    # Define the layout of the app
    app.layout = html.Div([
        dcc.Dropdown(
            id='country-select',
            options=[{'label': country['country_code'], 'value': country['country_code']} for country in combined_data],
            value=['USA'],  # Default value
            multi=True
        ),
        dcc.Dropdown(
            id='graph-type-select',
            options=[
                {'label': 'Line Graph', 'value': 'line'},
                {'label': 'Heatmap', 'value': 'heatmap'},
                {'label': 'Stacked Area Plot', 'value': 'area'},
                {'label': 'Pie Chart', 'value': 'pie'},
                {'label': 'Scatter Plot', 'value': 'scatter'},
                {'label': 'Bar Chart', 'value': 'bar'}
            ],
            value='line'  # Default value
        ),
        dcc.Graph(id='EN_ATM_GHGT_AIP_Data-graph')
    ])

    @app.callback(
        dash.dependencies.Output('EN_ATM_GHGT_AIP_Data-graph', 'figure'),
        [dash.dependencies.Input('country-select', 'value'),
         dash.dependencies.Input('graph-type-select', 'value')]
    )
    def update_graph(selected_countries, graph_type):
        traces = []
        layout = {
            'title': 'Emissions Data Visualization',
            'xaxis': {'title': 'Year'},
            'yaxis': {'title': 'Emissions (Metric Tons)'}
        }

        if graph_type == 'heatmap':
            z_data = []
            for country in selected_countries:
                country_data = next(item for item in combined_data if item["country_code"] == country)
                years = [data['year'] for data in country_data['data']]
                values = [data['emission'] for data in country_data['data']]
                z_data.append(values)
            traces = [go.Heatmap(z=z_data, x=years, y=selected_countries)]
            layout['title'] = 'Emissions Heatmap'

        elif graph_type == 'pie':
            total_emissions = []
            for country in selected_countries:
                country_data = next(item for item in combined_data if item["country_code"] == country)
                total_emissions.append(sum(data['emission'] for data in country_data['data']))
            traces = [go.Pie(labels=selected_countries, values=total_emissions)]
            layout['title'] = 'Total Emissions Distribution'

        elif graph_type == 'scatter':
            for country in selected_countries:
                country_data = next(item for item in combined_data if item["country_code"] == country)
                years = [data['year'] for data in country_data['data']]
                values = [data['emission'] for data in country_data['data']]
                traces.append(go.Scatter(x=years, y=values, mode='markers', name=country))

        elif graph_type == 'bar':
            for country in selected_countries:
                country_data = next(item for item in combined_data if item["country_code"] == country)
                years = [data['year'] for data in country_data['data']]
                values = [data['emission'] for data in country_data['data']]
                traces.append(go.Bar(x=years, y=values, name=country))

        else:  # Default to line or stacked area plot
            mode = 'lines+markers' if graph_type == 'line' else 'lines'
            stackgroup = 'one' if graph_type == 'area' else None

            for country in selected_countries:
                country_data = next(item for item in combined_data if item["country_code"] == country)
                years = [data['year'] for data in country_data['data']]
                values = [data['emission'] for data in country_data['data']]
                traces.append(go.Scatter(x=years, y=values, mode=mode, stackgroup=stackgroup, name=country_data["country_code"]))

            layout['title'] = 'Emissions Trend'

        return {
            'data': traces,
            'layout': layout
        }

    # Run the app
    app.run_server(debug=True)

# Run the main function
asyncio.run(main())

However I’m struggling to refactor this logic into an index.md with just javascript.

I do not care about performing the API invocations, but just reading from the duckdb .db file, .csv or .json produced here to be graphed interactively with the user being able to choose which plot to use. So pick as many countries as I want and choose between plot styles like heat, bar, stacked, line all in one interface: (like so in my python graph of the code above):

The .json file is structured like this:

[
    {
        "country_code": "AUS",
        "data": [
            {
                "year": "1990",
                "emission": 423.67222
            },
            {
                "year": "1991",
                "emission": 423.73306
            },
            {
                "year": "1992",
                "emission": 427.42608
            },
            {
                "year": "1993",
                "emission": 428.33707
            },
            {
                "year": "1994",
                "emission": 428.81822
            },
            {
                "year": "1995",
                "emission": 437.27655
            },
            {
                "year": "1996",
                "emission": 443.92827
            },
            {
                "year": "1997",
                "emission": 456.01598
            },
            {
                "year": "1998",
                "emission": 469.75152
            },
            {
                "year": "1999",
                "emission": 476.39199
            },
            {
                "year": "2000",
                "emission": 487.77776
            },
            {
                "year": "2001",
                "emission": 495.60431
            },
            {
                "year": "2002",
                "emission": 499.19049
            },
            {
                "year": "2003",
                "emission": 500.59996
            },
            {
                "year": "2004",
                "emission": 517.72651
            },
            {
                "year": "2005",
                "emission": 524.21149
            },
            {
                "year": "2006",
                "emission": 528.03842
            },
            {
                "year": "2007",
                "emission": 534.41784
            },
            {
                "year": "2008",
                "emission": 537.26231
            },
            {
                "year": "2009",
                "emission": 540.38162
            },
            {
                "year": "2010",
                "emission": 535.54922
            },
            {
                "year": "2011",
                "emission": 537.2055
            },
            {
                "year": "2012",
                "emission": 539.51105
            },
            {
                "year": "2013",
                "emission": 530.31191
            },
            {
                "year": "2014",
                "emission": 524.7094
            },
            {
                "year": "2015",
                "emission": 533.06383
            },
            {
                "year": "2016",
                "emission": 542.28787
            },
            {
                "year": "2017",
                "emission": 549.33002
            },
            {
                "year": "2018",
                "emission": 549.73194
            },
            {
                "year": "2019",
                "emission": 545.15252
            }
        ]
    },
    {
        "country_code": "AUT",
        "data": [
            {
                "year": "1990",
                "emission": 78.42049
            },
            {
                "year": "1991",
                "emission": 82.08233
            },
            {
                "year": "1992",
                "emission": 75.46927
            },
            {
                "year": "1993",
                "emission": 75.70919
            },
            {
                "year": "1994",
                "emission": 75.9583
            },
            {
                "year": "1995",
                "emission": 79.23798
            },
            {
                "year": "1996",
                "emission": 82.45259
            },
            {
                "year": "1997",
                "emission": 82.11623
            },
            {
                "year": "1998",
                "emission": 81.43285
            },
            {
                "year": "1999",
                "emission": 79.89837
            },
            {
                "year": "2000",
                "emission": 80.12943
...

and i put it in an appropriately named schema:

  • [EN_ATM_GHGT_AIP_series.json]

I tried many ways but to no avail:

Also I don’t understand why I can’t use ‘const’ or ‘let’ invocations and have to split each of them in individual cells for imports or functions?

This, is what I started with: https://www.youtube.com/watch?v=Urf_bPFyhIk

Would appreciate some guidance on how to:

  1. Add as many countries as I want in and out of any graph.
  2. Correctly build it with the fewest files possible with all or some of these files:
    a. /data/*.csv or *.json *.db
    b. index.html
    c. index.md (and how to style it cell for cell locally on my linux machine)

Thanks!

Also, I know I can invoke and add databases and SQL queries and I’ve some documentation, but is it just a matter of much larger file sizes in which .db files are recommended to be invoking and reading them over attachment reads?

Additionally, I need to make corrections for this as well as I test the waters with .sql querying. (I guess my formatting is incorrect): data-commons/docs/air/index.md at main · pchj/data-commons · GitHub

As in having a way to select which country is added to the graph? You can use a select or checkbox input

Modified from your Notebook. With Framework it’s a pretty similar process:

1 Like

Wonderful! thank you so much.

However, I am now wondering if there is a better option like this type of graph:


Where without checkboxes, you have the country with [United States x] etc.

What is the name of this object in Observablehq and how would I apply it for the same dataset as mentioned here?

I don’t think there is out of box input like that. Closest thing I can think of is select input with multi select:
Select Input / Observable Inputs / Observable | Observable


I notice theres an ability to select multiple like this but it was not intuitive at start. Do you know something as similiar as to a react widget like: https://codesandbox.io/p/sandbox/codesandboxer-example-zldndc?file=%2Findex.html%3A1%2C22&module=%2Fexample.tsx


from: React-Select

Here are two examples shared by Observable users:

1 Like

Thanks very useful! However I feel stuck here:


What do you suggest I do?

In general, I’m just wondering how to inherit the selection so I can plot as some kind of convenient data type, as I’ve done this in the past:

1.)

2.)

3.) Cannot use include?